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Analyzing an athlete’s “technique,” sport scientists often
focus on preselected variables that quantify important
aspects of movement. In contrast, coaches and practition-
ers typically describe movements in terms of basic pos-
tures and movement components using subjective and
qualitative features. A challenge for sport scientists is
finding an appropriate quantitative methodology that
incorporates the holistic perspective of human observers.
Using alpine ski racing as an example, this study explores
principal component analysis (PCA) as a mathematical
method to decompose a complex movement pattern into
its main movement components. Ski racing movements
were recorded by determining the three-dimensional

coordinates of 26 points on each skier which were subse-
quently interpreted as a 78-dimensional posture vector at
each time point. PCA was then used to determine the
mean posture and principal movements (PMk) carried out
by the athletes. The first four PMk contained 95.5 � 0.5%
of the variance in the posture vectors which quantified
changes in body inclination, vertical or fore-aft move-
ment of the trunk, and distance between skis. In
summary, calculating PMk offered a data-driven, quan-
titative, and objective method of analyzing human
movement that is similar to how human observers
such as coaches or ski instructors would describe the
movement.

In many sports there is a notable lack of communication
between sport scientists (particularly sport biomecha-
nists) and athletes and coaches (Reade et al., 2008a, b).
One of the main reasons for this lack of communication
might be that scientists and practitioners tend to quantify
and analyze athletes’ movements in different ways
(Loland, 1992). Scientists usually select, record, and
interpret specific measurable variables, such as body
angles or center of mass (CM) position, to quantify and
analyze human movements in sports (Hughes & Bartlett,
2002; Lees, 2002). Practitioners, on the other hand,
usually observe the whole-body movement of an athlete,
factorize this movement into specific components, and
describe the athlete’s “technique” as a combination of
such multisegment movement components (Knudson &
Morrison, 2002; Lees, 2002). For example, in alpine
skiing, instructors or technical coaches characterize an
athlete’s technique by describing specific movements
such as “body inclination,” “leaning forward/backward,”
“vertical movement,” “upper body rotation,” “skidding,”
and “pole planting” (Österreichischer Skischulverband,
2007; Deutscher Verband für das Skilehrwesen, 2011).

Both the quantitative, analytical approach of scientists
and the qualitative, global observations of coaches have
certain benefits but also substantial limitations. By sin-

gling out specific variables rather than considering the
whole movement of an athlete, sport scientists may miss
important information and in some cases may not even
be able to determine the origin for a change in their
observed variables (Lees, 2002). CM movements or
changes in the ground reaction force might, for example,
be caused by arm or leg movements and can only be
interpreted correctly if the movements of all of a body’s
segments are known and adequately quantified. Focus-
ing on preselected variables therefore often limits the
applicability of scientific studies when athletes or
coaches want to improve an individual’s “technique.” In
contrast, an experienced instructor or coach can often
give very useful practical advice; however, his or her
recommendations are typically based on a subjective
observation and interpretation of an athlete’s movement
and may therefore be incorrect or not the best solution
for a particular individual.

Two developments of the last two decades make
a merger between the scientific and practitioner
approaches to human movement assessment possible.
First, it has become standard practice in many sport
biomechanics laboratories to record the movements of
all segments of an athlete in three dimensions using
automated three-dimensional (3D) marker tracking tech-

Scand J Med Sci Sports 2012: ••: ••–••

doi: 10.1111/j.1600-0838.2012.01455.x

© 2012 John Wiley & Sons A/S

1



nologies. This technology provides large amounts of
data that scientists often still handle by determining and
analyzing specific variables, for example joint angles or
CM movements. However, whole kinematic information
is now available to scientists in a way that is similar to a
human expert’s absorption of whole-body movement
characteristics but far beyond a human observer’s capa-
bilities in accuracy and speed. Second, pattern recogni-
tion methods used to extract features from large data sets
or to classify and determine group differences have been
applied in sport biomechanics. One such method that can
be used for feature extraction is principal component
analysis (PCA).

The procedure developed in this study to identify and
quantify movement techniques in sports is based on a
method first described by Troje (2002) in an analysis of
human gait. Troje’s main focus was the perception of
gait. He has shown that the whole-body movements
of gait contain information that allow human observers
or computer classification algorithms to distinguish, for
example, between males and females (Troje, 2002),
young and old, happy or sad, and relaxed or nervous
walkers (Sigal et al., 2010). He extracted this informa-
tion by first separating the whole-body movements into
sets of principal movement directions that he called
“eigenpostures” and then linearizing the principal move-
ments by approximating them with sinusodial functions.
The eigenpostures, as well as parameters needed to
define the sinusodial functions (amplitude, frequency
and phase), form the feature space that was then used for
gait classification (Troje, 2002). Numerous studies have
since used this method to further investigate the percep-
tion of human movement (Troje & Westhoff, 2006;
Provost et al., 2008; Chang & Troje, 2009a,b; Schouten
et al., 2010), to develop classification or identification
algorithms in gait (Troje et al., 2005; Westhoff & Troje,
2007; Chang & Troje, 2009b), or to develop models for
the simulation and animation of human gait (Zhang &
Troje, 2007; Chen & Chai, 2010). However, relatively
few investigators have applied this or related methods to
other forms of human movement or to sports (Donà
et al., 2009; Murai et al., 2009; Moore et al., 2011).
Donà et al. (2009) applied functional PCA methods to
race walking and were able to distinguish knee kin-
ematic and kinetic differences of competitors at differing
levels of expertise. Moore et al. (2011) used PCA
methods to better understand rider and bicycle motions
used for steering and stabilizing a cycle through a range
of speeds. Their identification of principal motions of the
cycle such as steering, rolling, and yaw were found to be
unrelated to principal motions of the upper body. For
most of these earlier studies, the “eigenpostures” or prin-
cipal movement directions were used as the main fea-
tures for group classification. With the exception of
Moore et al. (2011), principal movements have received
little attention as individual components that constitute a
movement.

We suggest that the principal components of a move-
ment, determined similar to Troje’s “eigenpostures” in
gait, can be used to quantify the “technique” of indi-
vidual athletes and might thus provide a methodology to
scientifically assess “technique” in sports. This approach
might help bridge the communication gap between sci-
entists and practitioners in many sports.

The purpose of the current paper was therefore to
illustrate the applicability of PCA for the objective deter-
mination of the “principal movements” that comprise
technique in a sport. We demonstrate this for the sport of
alpine skiing because skiing is a relatively complex
movement involving all body segments.

Materials and methods

The primary focus of this paper involves PCA methods, but illus-
tration of these methods as applied to sport requires a relevant data
set for the analysis. Therefore, this section will begin with a brief
description of the biomechanical methods used to obtain 3D kin-
ematic data in alpine ski racing. Subsequently, PCA methods will
be outlined that use this ski data set to demonstrate the potential of
PCA as a tool that begins with whole-body observations and objec-
tively extracts the most fundamental motion characteristics cap-
tured in the data set.

Collection of ski kinematic data

The data used in the current paper were collected in the frame-
work of a thesis project that is described in detail in Reid et al.
(2009) and Reid (2010). In summary, six elite junior ski racers
(male, age 17–20, height 1.81 � 0.02 m, weight 82.7 � 7.5 kg,
International Ski Federation points 22.35 � 8.21, world rank in
their age classes between 1 and 6) were recruited into the
study. They gave informed written consent, and the study was
registered with the Ombudsman for Privacy in Research, Norwe-
gian Social Science Data Services, AS. The athletes performed
three trials under race conditions on a competition-length
slalom course where the first portion of the course was set
rhythmically with gates 10 m apart and an offset of 2 m. The
slope had an average inclination of 19° with hard-pressed
and frozen snow conditions typical for race courses in spring-
time. A volume of 50 m ¥ 10 m ¥ 2 m containing two full-turn
cycles (right and left turns at gates 11 and 12, respectively) was
calibrated and equipped with 208 control points that allowed
reconstruction of the skiers’ motion. Skier movements were
captured using four panning and tilting phase alternating line
digital video camcorders (50 Hz) that were synchronized postre-
cording. The fastest trial of each subject was selected for further
analysis and manually digitized using a custom-written Matlab
program (The Mathworks Inc., Natick, Massachusetts, USA).
Object points were reconstructed using the direct linear transfor-
mation method (Abdel-Aziz & Karara, 1971). The maximum
measurement error of this procedure was calculated to be
between 9 and 25 mm; the observed variability of the segment
lengths was found between 7 and 14 mm pooled SD (Reid,
2010).

The skiers’ movements were quantified by determining 23
points distributed over the skier and the equipment, which indi-
cated the positions of the skier’s head, shoulders, elbows, wrists,
hands, hip joints, knees, ankles, pole tips, ski tips, and ski tails.
These reference points allowed representation of the skier as
a stick figure facilitating a qualitative analysis of the skiers’
movements (Fig. 1).
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In addition to these 23 points on body and equipment, shoulder
and hip midpoints were calculated along with the CM position.
This was determined for each time frame using Zatsiorsky’s
(2002) body segment parameters with de Leva’s (1996) adjust-
ments, which had been modified to account for the additional
masses of the skiing equipment (Reid, 2010). The CM trajectory
was filtered with a second-order low-pass Butterworth filter with a
10-Hz cutoff frequency. This was done to avoid noise amplifica-
tion in the calculation of the CM velocity vector. The other marker
coordinates were not filtered.

Reference system

The data set quantifying the movement of the skier in each trial
consisted of 137 � 3 time frames (different number of frames
per trial due to different speeds of the skiers) that each contained
78 spatial coordinates (26 3D points on the skier and equip-
ment). In order to analyze the skiing technique, this data set first
needed to be transformed from the stationary external coordinate
system to an appropriate reference system attached to and
moving with the skier. Therefore, a reference system was con-
structed in which the x-z-plane corresponded to the sagittal and
the y-z-plane to the coronal plane of the subject. The midpoint
between the two skis was selected as an origin of this reference
system. The x-axis pointed in the direction of the CM velocity
vector projected onto the plane of the snow surface. The z-axis
was determined by calculating the vector from the midpoint of
the skis to the skier’s CM and by projecting this vector onto a
plane perpendicular to the x-axis. The y-axis completed a right-
angled, right-handed coordinate system. Hence, this system
moved, rotated, and inclined with the skier as he was skiing
through the turns.

Data analysis

Similar to Troje’s (2002) analysis of gait data, we interpreted the
78 spatial coordinates as a posture vector P(t) in a 78-dimensional
vector space (posture space). This space was spanned by all 26
reference point coordinates:

P t m t m t m t m t m tx y z x z( ) = ( ) ( ) ( ) ( ) ( ){ }
� ����

1 1 1 2 26, , , , ,, , , ..

where mi with i = 1 . . . 26 refer to markers 1–26 and t refers to the
time index of the selected video frame. At each measurement time
point the subject had a specific posture that corresponded to a

specific vector in the “posture space.” As the subject moved, his
posture and thus the vector representing his posture in the
78-dimensional vector space changed. The movements of a subject
were therefore represented by the variability of the posture vectors
in posture space. The distribution of the posture vectors in posture
space was restricted by anatomical limitations and characterized
by a high redundancy. A mean posture can be calculated for each
subject:

P mean P tmean all time points

� ����� � ����

= ( )( )

PCA is a mathematical method to determine the direction of the
largest variability in high-dimensional data sets (Daffertshofer
et al., 2004). The calculation steps for a PCA are (a) removal of the
mean; (b) calculation of the covariance matrix of the data; (c)
determination of the eigenvalues and eigenvectors of the covari-
ance matrix; and (d) transformation of the original data onto a
coordinate system spanned by the eigenvectors of the covariance
matrix.

In the application of PCA on the posture vectors as defined
here, the removal of the mean represents the subtraction of the
mean posture Pmean

� �����

. Hence, only changes in posture, or in other
words, only relative movements were analyzed. The covariance
matrix was 78 ¥ 78-dimensional. The eigenvector of the covari-
ance matrix with the largest eigenvalue points in the direction of
the largest variance of the data set (i.e., it represents the direction
of the largest movement of the subject). The second eigenvector
represents the direction of the second-largest movement in the
subspace perpendicular to the largest movement and so on. The
eigenvectors are usually called “principal component vectors”
PCk

� ����

( ) and ordered according to the amount of variability they
represent. The eigenvalues (EVk) quantify the amount of variabil-
ity in the direction of the associated eigenvector. They can be
represented as absolute values, or they may be normalized by
dividing by the trace of the covariance matrix. In the latter case,
they represent the relative variability of posture vectors (in %) in
the direction of the corresponding eigenvector relative to the
variability in the entire data set. The transformation of the origi-
nal 78-dimensional posture vectors onto a coordinate system
spanned by the principal components

P t P c t PCmean k k

k

( ) = + ( )
=

∑
� ���� � ����� � ����

1

78

was facilitated by projecting each posture vector onto the principal
components yielding the coefficients ck:

c t P t PCk k( ) = ( ) ⋅
� ���� � ����

The information in the original data set was highly redundant.
Therefore, it was not necessary to consider all 78 principal com-
ponent vectors. If the eigenvalue EVk of a principal component
PCk was small, then the movements of the subject in the direction
of the associated PCk were small and hence did not add substan-
tial information about the movements of a subject. Therefore, the
data can be represented with a given level of accuracy consider-
ing only those PCk whose EVk exceed a predefined threshold. For
instance, Troje (2002) showed that the first four PCk together
covered 98% of the entire variability of the data set in human
gait.

Principal movements

Representing the subject movements as a sum of a mean posture
and a set of principal component movements factorized a subject’s
complex multisegment movements executed during a trial into a
set of distinct one-dimensional movements. In order to visually

Fig. 1. (a) stick figure representing one subject in a turn to the
right. (b) Velocity of the center of mass (CM), body inclination
b, and the axes of the reference system for this posture. The
x-z-plane represents the sagittal plane; the y-z-plane represents
the coronal plane.
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illustrate the principal component movements, we defined “prin-
cipal movements,” PMk, as

PM t P c t PCk mean k k( ) = + ( )
� �������� � ����� � ����

because these principal movements can be transformed back into
the original coordinate system consisting of 3D reference points.
This allowed the reconstruction and animation of stick figures
executing only the principal movements. The individual skiing
technique of a subject could then be qualitatively assessed by
analyzing the animations of the individual PMk’s. The PMk were
characterized by their eigenvalues EVk and the magnitude and
timing of the coefficients ck(t). In this paper, the ck(t) were
presented as a function of the inclination angle b because b
provided an intuitive characterization of the turn cycles (see
Fig. 1). In these graphs, positive values of b indicate a right
turn and negative values of b indicate a left turn, which corre-
spond to the first and second turns in the analyzed turn cycle,
respectively.

Quantitative comparison of the technique of different athletes

Applying PCA to an individual subject allows a quantification of
the subject-specific technique employed in a particular trial.
However, different subjects will execute movements differently,
leading to a unique set of principal component vectors for each
subject, making a direct comparison of different subjects’ tech-
niques difficult. Common movement components of different
skiers may be compared between subjects if the PCA is conducted
on a data set composed of the posture vectors of all subjects (i.e.,
now one covariance matrix was calculated for all subjects).
However, the variance of such a combined data set is caused not
only by the movement executed by the subjects but also by the
anthropometric differences between the subjects. In this study we
were only interested in the variance caused by the movements
executed by the skiers. The influence of anthropometric differ-
ences was therefore reduced by first calculating and subtracting
the mean posture Pmean

� �����

for each individual subject (similar to step
1 as described earlier). Hence, the PCA was then calculated on the
data set containing the changes of posture of all six subjects.
Differences in the individual skiing technique were then quantified
as differences in the mean posture of the subjects and as differ-
ences in how the subjects executed the common principal
movements.

Results
Individual alpine skiing technique quantified by
principal movements

The eigenvalues for the first 10 PMk are shown in Fig. 2.
The first four PMk together were responsible for
95.5 � 0.5% of the variance in the posture vectors; the
first eight PMk were responsible for 99.3 � 0.2% of the
variance.

As an example, Fig. 3 shows the first five PMk of
subject A (video 1). The first graph in each row shows the
coefficient ck(t) as a function of the body inclination b.
For each PMk three points (1, 2, 3) of the turn cycle were
selected in chronological order where the ck(t) assumed
either a large positive, small, or large negative amplitude.
At each point a stick figure gives a visual illustration of
the PMk. In all subjects, the PM1 represented a change of
posture that enabled frontal plane body inclination
through outer leg extension and inner leg flexion (Fig. 3,

first row; video 2). At the same time, the upper body
laterally flexed and angled away from the snow surface.
Higher-order PMk were subject specific. In subject A,
PM2 quantified a flexion-extension of the knee and hip
joint synchronized with an increase or decrease of the
distance between the skis (Fig. 3, second row; video 3).
Near the gate, the skier showed an extended posture and
a short distance between skis. In between turns, he was
in a low body position with a wider distance between the
skis. This is a typical technique in a tight slalom course,
and all subjects in this study showed it either as PM2 or
as PM3. PM3 quantified a rotation of the skis away from
the skier’s CM velocity (x-axis), which coincided with a
rotation of the upper torso (shoulders) around the verti-
cal body axis (Fig. 3, third row; video 4). This rotation of
the skis might be related to side skidding and seemed to
occur particularly at the end of the second turn (position
3 in Fig. 3, third row). PM4 quantified a hip-flexion and
a crouching of the upper body that coincided with a
rotation of the skis about a medio-lateral axis (Fig. 3,
fourth row; video 5). At the beginning of the turn (posi-
tion 1 in Fig. 3, fourth row), the skier was relatively
upright. At the end of the first turn (position 2), the skier
was in a relatively low position. At the end of the second
turn (position 3), the skier was more upright as compared
with the first turn, which might have been caused by the
side skidding seen in PM3. PM5 quantified a rotation of
the skis away from the CM velocity in an opposite direc-
tion to PM3 (Fig. 3, fifth row; video 6). Large magnitudes
of this movement were found when the skier was maxi-
mally inclined (positions 1 and 3). We speculate that this
ski rotation might be a mechanism to trigger the upright
positioning of the skier’s body.

Among the other subjects, most principal movements
were similar but often appeared in a different order.

Fig. 2. Mean eigenvalues of the first 10 individual principal
component vectors. The bar indicates the mean values over the
six subjects; the error bar represents the standard deviation.
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Some subjects also showed other combinations of move-
ments; for example, the change of distance between the
skis, which was part of PM2 in subject A (Fig. 3), was
sometimes combined with the hip flexion and crouching
of the upper body (PM4 in Fig. 3). Some subjects showed
specific movements that did not appear in the other sub-
jects. For example, subject B showed a ski wedge in the
initiation of the second turn that appeared in PM2 (Fig. 4,
first row; video 7); subject C showed extensive arm and
pole movements, particularly at the end of the second
turn, which appeared in PM2 (Fig. 4, second row; video
8); and unlike the other subjects, subject D used classical
pole planting, which caused a stronger rotation of the
body visible in PM3 (Fig. 4, third row; video 9).

Quantitative comparison of the technique of
different athletes

Eigenvalues for the first 10 PMk calculated for the data
set containing the change of posture of all subjects are
shown in Fig. 5. The accumulated EVk showed that the
largest PMv did not represent the variance in the pos-
tures as well as the PMk calculated for individual sub-
jects. The first four PMk together were responsible for
88% of the variance in the posture vectors while the first
eight PMk were responsible for 95% of the variance.

The five PMk with the largest EVk are represented in
Fig. 6. As an example, the techniques of subjects A and
C are compared. Subjects A and C reached similar body

Fig. 3. First five principal movements determined for subject A. The first graph in each row shows the coefficient ck(t) as a function
of the body inclination b. The following graphs represent the principal movement at the time points indicated in the first graph.
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inclinations of 58° and 56° in the right turn and -60° and
-62° in the left turn, respectively. PM1 represented a
change of posture that enabled the body inclination
(Fig. 6, first row; video 10), similar to PM1 calculated for
the individual subjects. This movement was similar in
subjects A and C. Some of the other subjects showed a
hysteresis in PM1, indicating differences in how fast they

leaned into the turn as compared with when they
returned to the upright posture. PM2 quantified a crouch-
ing of the upper body coinciding with a forward move-
ment of the arms and poles (Fig. 6, second row; video
11). The c2(t)-b-graph showed that in this study, the PM2

movement was not carried out to the same extent in the
right turn and in the left turn. We speculate that the side
inclination of the skiing slope might have caused this
asymmetry in how PM2 was carried out. The subjects
also showed substantial differences in how they carried
out this movement; for example, subject C showed a
very extensive PM2 movement in his left turn, which
amounted to approximately twice the movement carried
out by subject A.

PM3 quantified a vertical motion caused by the flexion
of knee and hip joints (Fig. 6, third row; video 12). All
subjects tested in this study showed the general inverted
U-shape as shown in Fig. 6 for subjects A and C. Small
deviations, such as seen in subject C between b = -50°
and b = -60°, may indicate, for example, that a subject
had to compensate for an unevenness of the ski slope.
PM4 quantified a yawing of the skis with respect to the
skier’s CM velocity (Fig. 6, fourth row; video 13), while
the skiers’ posture changed similarly to PM1. We specu-
late that PM4 might be related to side skidding or drifting
of the skis. All subjects in this study showed a similar
range of the PM4 movement; however, the shape formed
in the c2(t)-b-graphs were highly subject specific. PM5

Fig. 4. Subject-specific techniques: ski wedge in the initiation of the second turn (first row, position 3); extensive arm and pole
movements (second row, position 3); and rotation of upper body and preparation for classical pole planting (third row).

Fig. 5. Eigenvalues of the first 10 principal component vectors
calculated over all subjects.
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quantified a backward movement of the upper body coin-
ciding with an outward movement of the poles (Fig. 6,
fifth row; video 14). In this study, subject A showed a
small range of the PM5 movement whereas subject C
showed this movement extensively.

Discussion

Previous studies analyzing skiing technique measured
selected variables that allowed an identification of
changes in skiing technique; however, the actual tech-
nique of the skiers was described only qualitatively
(Müller & Schwameder, 2003; Federolf et al., 2008;

Scheiber et al., 2010, 2011). PCA as applied in this study
offers a data-driven method to decompose the complex,
whole-body movements of a skier into a set of one-
dimensional principal movements that can be quantified
and analyzed independently. The method of transform-
ing the marker data into a new coordinate system that
originates in a mean posture and is spanned by the prin-
cipal component vectors represents a new perspective of
how human movements may be quantified. This new
perspective can be considered as similar to the way
human observers would characterize and assess move-
ments in sport in that it begins with a whole-body obser-
vation. Further, it offers several features that are not

Fig. 6. Common principal movements (PM) calculated for all subjects. Left: a graph comparing the skiing technique of subject A with
the technique of subject C for the full-turn cycle. Right: two postures of the subject showing the largest amplitude in this PM displayed
for the points specified in the turn cycle.
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available with conventional movement analysis
methods. For instance, this approach permits a holistic
assessment of the entire movements carried out by an
athlete. Moreover, the EVk quantify the contribution of
each PMk to the entire movement and thus quantify the
amount of information that is lost if the analysis is
limited to a specific subset of principal movements. The
resultant PMk are purely data driven and therefore are an
objective characterization of the observed movement.
Different PMk are uncorrelated but may not necessarily
be functionally independent. Further, no variables are
preselected for the analysis; hence, no prior knowledge
about the movement is necessary. A prerequisite,
however, is that sufficient markers were distributed over
the subject. The PCA filters out redundant information if
more markers than necessary are employed; however, if
important information about the movement is not repre-
sented in the data, then such information can obviously
not influence the result. Finally, the ability to visualize
individual PMk is particularly useful for many practical
applications, for example in coaching athletes or in train-
ing instructors and coaches.

The accuracy or uncertainty of the principal move-
ments depends on (a) uncertainty of the vector compo-
nents of the PCk and (b) on the uncertainty of the ck(t).

The uncertainty of the PCk vector components depends
on the variance in the data set and thus on the variance
observed in the marker positions. The method is there-
fore particularly well suited for highly dynamic move-
ments such as skiing. The ck(t) are calculated by
projecting the posture vectors onto the PCk vectors
which is equivalent to calculating a weighted mean. The
accuracy of the ck(t) can therefore be approximated using
the estimates for the uncertainty of weighted mean
values.

There are several limitations to the PCA methodology.
First, PCA is a linear decomposition method, and it may
therefore not remove all redundancy in a data set. A
rotation of the subject, for example, will be represented
by at least two principal components even though it
might be possible to represent it as a one-dimensional
movement in appropriate nonlinear coordinates. Second,
some PMk represent a combination of two or more
movements that a human observer would consider as
independent movements. If, for example, a vertical
movement and a rotation of the upper body occur in
phase during the movement cycle, then PCA may not be
able to separate them. This is particularly critical if large
rotations occur in the analyzed movement. In this case,
the choice of an appropriate reference system that rotates
with the athlete may lead to PMk that are easier to
analyze and interpret. For example, if in this study a
reference system would have been chosen that did not
rotate and incline with the subject, then more principal
movements would have been necessary to represent each
subject’s skiing technique and the resultant principal
movements would have been a combination of rotations

and other movements. A further limitation is that while
the PMk quantify the movement as executed by the
athlete, the causes for these movements remain
unknown. For example, in skiing a movement might be
the active actions of the skier or compensatory move-
ments that were necessary due to uneven ground or due
to skidding. One solution to this issue would be the
analysis of larger data sets containing multiple turn
cycles such that individual events would have less influ-
ence on the PCA results.

Perspective

This study showed how PCA performed on the coordi-
nates of a full body marker set offers objective and
quantitative criteria for an assessment of an athlete’s
individual technique during complex human actions,
such as in alpine skiing. In other sports, similar methods
could provide coaches and practitioners new insights
into their sport and their athletes’ techniques. Particu-
larly the ability to visualize the individual components of
a movement will help practitioners to develop a better
understanding of how complex movements are executed.
When applying the PCA analysis as outlined in this
study, it might be useful to consider other normalization
procedures, e.g., normalization to unit variance.

This method may find other applications in the near
future. One obvious application lies in the biomechani-
cal feedback available for coaches to use when planning
the training of athletes, but the method might also
support instructors or coaches in developing their skills
to assess an athlete’s movements. Correlating the prin-
cipal movements with functional variables such as
ground reaction forces or performance variables should
also offer a deeper understanding of the functional con-
sequences of an athlete’s actions and may therefore help
in the improvement of an athlete’s technique. Such a
functional analysis might also find applications in the
development of sports equipment because the move-
ments executed by the athletes define the loading char-
acteristics for the equipment (Federolf et al., 2010).
Quantifying the main movement components by princi-
pal movements might therefore help to better define
appropriate boundary conditions.

Advances in technology will further enhance the pro-
posed method of analyzing technique in sport. Marker-
less motion tracking is being developed in several
laboratories, and accelerometry, inertia, and GPS
systems are being combined to quantify human move-
ment over large distances outside the laboratory environ-
ment. All of these technologies create a large amount of
3D kinematic data. The PCA methods described in this
paper offer a strategy to handle and extract useful infor-
mation from such data sets in a wide variety of sports.

Key words: human movement analysis, biomechanics,
coaching, alpine skiing.
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